Two-dimensional manipulation of differentiated Madin-Darby canine kidney (MDCK) cell sheets: The noninvasive harvest from temperature-responsive culture dishes and transfer to other surfaces

Author(s):  
Ai Kushida ◽  
Masayuki Yamato ◽  
Akihiko Kikuchi ◽  
Teruo Okano
1996 ◽  
Vol 270 (1) ◽  
pp. C200-C207 ◽  
Author(s):  
E. D. Kwon ◽  
K. Zablocki ◽  
E. M. Peters ◽  
K. Y. Jung ◽  
A. Garcia-Perez ◽  
...  

The amount of glycerophosphocholine (GPC) in renal medullary cells in vivo and in cultured renal [Madin-Darby canine kidney (MDCK)] cells varies with extracellular NaCl and urea. We previously showed that this is largely due to modulation of GPC degradation catalyzed by GPC:choline phosphodiesterase (GPC: PDE). GPC also varies inversely with the levels of other compatible osmolytes, the accumulation of which is induced by high tonicity. We tested whether GPC:PDE activity and GPC degradation are affected by accumulation of compatible osmolytes other than GPC. We find that MDCK cell GPC content decreases when the cells take up betaine and/or inositol from the medium. The effect is considerably greater for cells in isosmotic or high-NaCl medium than in high-urea medium. This difference is associated with suppression of betaine and inositol accumulation with high urea. We then measured GPC:PDE activity with a novel chemiluminescent assay. Addition of inositol and/or betaine to the medium greatly increases GPC:PDE activity in cells in isosmotic or high-NaCl media, but the increase is much less in high-urea medium. The increases in GPC:PDE activity, associated with the presence of betaine, are accompanied by commensurate increases in absolute rates of endogenous GPC degradation by cells in isosmotic or high-NaCl medium. We found previously that, in MDCK cells incubated for 2 days in high-NaCl medium, the rate of GPC synthesis from phosphatidylcholine is increased, correlated with an increase in phospholipase activity. However, in the present experiments, betaine accumulation has no effect on phospholipase activity under those conditions and, thus, presumably does not affect GPC synthesis. Collectively, these data support the conclusion that betaine and/or inositol reduces GPC by increasing GPC degradation catalyzed by GPC:PDE. This mechanism enables GPC to be reciprocally regulated relative to other compatible osmolytes, thus maintaining an appropriate total osmolyte content.


2000 ◽  
Vol 11 (3) ◽  
pp. 1077-1092 ◽  
Author(s):  
Sarah Wallis ◽  
Susan Lloyd ◽  
Irene Wise ◽  
Grenham Ireland ◽  
Tom P. Fleming ◽  
...  

Initiation of reepithelialization upon wounding is still poorly understood. To enhance this understanding, we focus here on changes in the adhesive state of desmosomes of cultured Madin-Darby canine kidney cells in response to wounding of confluent cell sheets. Previous results show that desmosomal adhesion in Madin-Darby canine kidney cells changes from a calcium-dependent state to calcium independence in confluent cell sheets. We show that this change, which requires culture confluence to develop, is rapidly reversed upon wounding of confluent cell sheets. Moreover, the change to calcium dependence in wound edge cells is propagated to cells hundreds of micrometers away from the wound edge. Rapid transition from calcium independence to calcium dependence also occurs when cells are treated with phorbol esters that activate PKC. PKC inhibitors, including the conventional isoform inhibitor Gö6976, cause rapid transition from calcium dependence to calcium independence, even in subconfluent cells. The cellular location of the α isoform of PKC correlates with the calcium dependence of desmosomes. Upon monolayer wounding, PKCα translocates rapidly to the cell periphery, becomes Triton X-100 insoluble, and also becomes concentrated in lamellipodia. The PKCα translocation upon wounding precedes both the increase in PKC activity in the membrane fraction and the reversion of desmosomes to calcium dependence. Specific depletion of PKCα with an antisense oligonucleotide increases the number of cells with calcium-independent desmosomes. These results show that PKCα participates in a novel signaling pathway that modulates desmosomal adhesion in response to wounding.


1988 ◽  
Vol 107 (1) ◽  
pp. 221-230 ◽  
Author(s):  
B B Finlay ◽  
B Gumbiner ◽  
S Falkow

Many intracellular parasites are capable of penetrating host epithelial barriers. To study this process in more detail we examined the interactions between the pathogenic bacteria Salmonella choleraesuis and polarized epithelial monolayers of Madin-Darby canine kidney (MDCK) cells grown on membrane filters. Association of bacteria with the MDCK cell apical surface was an active event, requiring bacterial RNA and protein synthesis, and was blocked by low temperatures. Salmonella were internalized within a membrane-bound vacuole and exhibited penetration through, but not between MDCK cells. A maximum of 14 Salmonella per MDCK cell crossed the monolayer per hour to the basolateral surface yet the monolayer remained viable and impermeable to Escherichia coli. Apical S. choleraesuis infection resulted in an increase in paracellular permeability but the MDCK intercellular contacts were not significantly disrupted. Basolateral S. choleraesuis infection was inefficient, and only small numbers of S. choleraesuis penetrated to the apical medium.


1988 ◽  
Vol 106 (4) ◽  
pp. 1141-1149 ◽  
Author(s):  
J M Anderson ◽  
B R Stevenson ◽  
L A Jesaitis ◽  
D A Goodenough ◽  
M S Mooseker

ZO-1, originally identified by mAb techniques, is the first protein shown to be specifically associated with the tight junction. Here we describe and compare the physical characteristics of ZO-1 from mouse liver and the Madin-Darby canine kidney (MDCK) epithelial cell line. The ZO-1 polypeptide has an apparent size of 225 kD in mouse tissues and 210 kD in canine-derived MDCK cells as determined by SDS-PAGE/immunoblot analysis. ZO-1 from both sources is optimally solubilized from isolated plasma membranes by either 6 M urea or high pH conditions; partial solubilization occurs with 0.3 M KCl. The nonionic detergents, Triton X-100 and octyl-beta-D-glucopyranoside, do not solubilize ZO-1. These solubility properties indicate that ZO-1 is a peripherally associated membrane protein. ZO-1 was purified to electrophoretic homogeneity from [35S]methionine metabolically labeled MDCK cells by a combination of gel filtration and immunoaffinity chromatography. Purified ZO-1 has an s20,w of 5.3 and Stokes radius of 8.6 nm. These values suggest that purified ZO-1 is an asymmetric monomeric molecule. Corresponding values for mouse liver ZO-1, characterized in impure protein extracts, were 6 s20,w and 9 nm. ZO-1 was shown to be a phosphoprotein in MDCK cells metabolically labeled with [32P]orthophosphate; analysis of phosphoamino acids from purified ZO-1 revealed only phosphoserine. ZO-1 epitope number was determined by Scatchard analysis of competitive and saturable binding of two different 125I-mAbs to SDS-solubilized proteins from liver and MDCK cells immobilized on nitrocellulose. Saturation binding occurs at 26 ng mAb/mg liver and 63 ng/mg of MDCK cell protein. This is equivalent to 30,000 ZO-1 molecules per MDCK cell assuming a single epitope/ZO-1 molecule.


1987 ◽  
Vol 34 (3) ◽  
pp. 339-346 ◽  
Author(s):  
IZUMI SUKEGAWA ◽  
NAOMI HIZUKA ◽  
KAZUE TAKANO ◽  
KUMIKO ASAKAWA ◽  
KAZUO SHIZUME

Sign in / Sign up

Export Citation Format

Share Document